Class number تormule.
87 Mohuahon for Maiss foms
In the rest og die sereoter, we'll took at the case of Manss forms.
There are finchons thot renffom like a modulo fom but we do net require anymer that tey ore holomorphic Geting rid of this shrong regulanty wndition will also lead to non-muiel examples feun in verght zeo.
Recule $=\mu_{0}(T)=\Psi$
utecos when ue olloued menomephicity of x we olredy got a vy interesting nen. -mud example $j(z)=F_{4}^{3} \cdot 1 \Delta$

$$
=\frac{1}{9}+744+1968849 \tau-\quad-
$$

Mlaass foms are funchons $f=1 H \rightarrow \Phi$ that or (1) Invonont under $T=f(\gamma z)=f(z)$ $\forall r \in \Gamma$
(2) $\Delta f=\lambda f$ for sone $\lambda \in \mathbb{C}$ whee $\Delta=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)$ the soccalled hypebolic Loplacion
(3) tor ang $x, f(x+y)=O\left(y^{N}\right)$ forsom N as $y \rightarrow x$

Te I schsfies a moderate gouth enditur at " ∞ "

But to mohuote thar study vell frst look of a uey classical problem of representacion of integers by quodrote foms and
Dinchlet's cluss \# fomia
87 -1 Class nimbon Fonlex
Dirichlet's class number famula in its simplest fom was confectred by Jawoi in 1832 ad proed by Dnchlet in 1839. Nowadays it is giun in tems of quedrate félds and tran class number the fomue of Oinchlet wos gexeched by Dedekind to orbitray number fretds and it reletes anthrehe date ussocialed to a dinte extertion K / Q to the reside of $s=1$ of the rete gnchon $\beta_{k}(s)$ associated to K

Let $[k: Q]=n=r_{1}+2 r_{2}$
whee $r_{1}=\#$ of red embeddings of K $2 r_{2}=H$ of complex III y K.

Let $q_{k}(s)=\sum_{\operatorname{ac\theta _{k}}} \frac{1}{N_{k / Q}(a)^{s}}$
Whee or uns thnough non-zero ideds in
the ning of intgers
Ob of K
$N_{K / Q}(\Omega)$ is he nom of he dal which is equel to $\left[\theta_{k}=a\right]$
$\vartheta_{k}=r i n g$ of olg-integers contaired in k
$=\{\alpha \in K \mid \alpha \bar{s}$ a root of a manic poly
Let $h_{k}=\begin{gathered}\text { class numbo }=\# \text { of eits in tre } \\ \\ \text { ded class grop of } K .\end{gathered}$ ded class gnop of K.

$$
\text { Class goup }=I_{k} / P_{k}
$$

$J_{k}=$ grep of fraction dals of O_{k} $P_{k}=$ gop of procipel deels
[A frachand deel of an integrel domain R]
(whe $k=t s$ feld of frachions)
is on R-sibmodile I of K sueh that $\exists r \in R$ st $r I \subseteq R$
(A Jrechoil dal $I \subseteq \mathbb{R} \Leftrightarrow$ is an intagel (dal of R)
Aprnapil frachad due is an R-sibmode $y K$ gerected by a sigle elt of K.
let $D_{k}=$ disenmpent of k / Q
Let $\operatorname{Rog} K=$ reguto of k
=This is the defteminat of a rer
if $x=Q(\sqrt{D})$
f D<0
$R_{K}=1$ minon of a $\quad r \times(r+1)$ manx
Wher $r=r_{1}+r_{2}-1$
He entries of he mamix M foomed by takng u_{1}, u_{r} a set of genertors of the unit gp of K and r_{t} offeent embeddings of K inle \mathbb{R} on

$$
\left.M=\left(\alpha_{j} \log \operatorname{lu} u_{i}^{(j)}\right)\right)_{i=1, r}^{j=1, r+1}
$$

$$
\alpha=10-2
$$

$$
\text { of } f^{t h}
$$

$$
\text { embed is } 120-
$$ L.

$u_{k}=$ numbe of nots of unif $\bar{n} k$
Tren
Thm (class $\#$ fomla) $\imath_{k}(s)$ conujes abs for ress and extends to a reenmophic Junchon dypred $\forall s=\Psi$ with onl a simple pole at stl ath reside

$$
\lim _{s \rightarrow 1}(s-1) \rho_{k}(s)=\frac{2^{n}(2 \pi)^{2} \operatorname{Reg}_{k} h_{k}}{w_{k}\left|D_{t}\right|}
$$

We ultake a more elerrentag oppeach and prove Dinchlet's closs \# Omula for integral A Binory quadratic forns of negohe discriment - There I^{2} a conespondonee idealsina betueen quedrene foms and 'quedrahe felt of dise $D \quad$ of disciD.

The classicel fonula of pinchlet relates ore closs $\# g$ positè dy $B Q F s$ of disc D to the value ot $s=1$ of $L\left(s, x_{\theta}\right)$ Jor a charater mod D. and tren exprestes tre valle $4\left(1, x_{0}\right)$ as of finite sum.
we il stet what ore fost stape, wheh expressed $L\left(1, x_{D}\right)$ in toms ol cluss $\# n_{D}$
tor this ve stort with of ghet oreciew y) Dinong quodratct foms

Binan quadrathe toms.
$($ rglipuel $), z \operatorname{grer})$
Uestert with a classical trearem of Fermet
Thm $($ ternat $) x^{2}+y^{2}=p \quad$ p a phñe hes a soluhin $(x, y) t z^{2} \Leftrightarrow p \equiv 1$ nod 4
Pf Seo ang bock on elomenteny if trepey
Rml Using tremot's thm $40-a \quad p=1(4)$ we cen sat $\Rightarrow x, y e t z 5-t \quad x^{2}+y^{2}=p$ But then $p^{2}=\left(x^{2}+y^{2}\right)^{2}=\left(x^{2}+y^{2}\right)^{2}+(2 x y)^{2}$ Honee tandit thm soys thet $0 \quad p=14$ ten p the hypotenuse of a meht onedet triage with scde $x^{2}-y^{2}, 2 y y / p$ and hence Temots thon il a thm in Pytogorton Tradthw Femat also showed that

$$
\begin{aligned}
& x^{2}+2 y^{2}=p \\
& 3^{2}+2 \cdot z^{2}=1 \\
& x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\operatorname{s} \cdot 3^{2}+2 \cdot 2^{2}=17\right) \quad \text { nod } 8 \\
& x^{2}+3 y^{2}=p \quad 11 \quad \square \quad \mathrm{rad} 3 \\
& \left.\cos 2^{2}+3 \cdot 1^{2}-7\right)
\end{aligned}
$$

All trese are examples of Binoy quacrate Foncs $\left(B F Q_{D}\right)$

$$
\begin{aligned}
& Q(x+y)=A x^{2}+B x y+\frac{C y^{2}}{}+B \cdot c \in \pi \\
& \binom{\text { ore retehty }}{\text { prine }} \\
& \text { let } D=d \operatorname{sco} Q=B^{2}-4 A C \\
& \text { ponke () }
\end{aligned}
$$

and will unte $A, B, C] \tan A x^{2} B x y+C$

The queston whother a guen pinme s con be untten as $Q(x, y)=p \quad$ for ane $q=(4 B G$ and $x, y \in \mathbb{Z}$ hes sone redundong! for exampe the queshon wheffer $2 x^{2}+3 y^{2}=p$ hos integel soln is sare as $\quad 2 y^{2}+3 x^{2}=p$ This is nst change of vancbles $(x) \rightarrow(-y)$

$$
=\left(\begin{array}{cc}
\theta & -1 \\
1 & 0
\end{array}\right)\binom{x}{y}
$$

Less oburus $\frac{14}{}$ thet it I also same If we consider tre quadrohe fom

$$
2 x^{2}+4 x y+5 y^{2}
$$

Sinee $\quad 2 x^{2}+4 x y+3 y^{2}=2(x+y)^{2}+3 y^{2}$ and this $\overline{4}$ ou chge of vapables

$$
\binom{x}{y}=(01)\left(\frac{x}{y}\right)=\left(\frac{x+y}{y}\right)
$$

To avoid this kind of redundoncy Gouss inmodueld on equivdence relation gor guedrene fomst.
Dofn we sog 2, poms $Q=C A, B, C]$ and $\left.S^{\prime}=C A, B^{\prime}, C^{\prime}\right]$ ore equualent and unte QिलQ \& \exists
a meñx $M=\left(\begin{array}{ll}\alpha & \beta \\ 8 & s\end{array}\right) \leq \leq(2, Z) \quad s, t$

$$
\theta(x+y)=Q(\alpha x+\beta y) \gamma x+f y)
$$

Ghth shomphot thit depres an equivelence relahon on the set of guodretic Joms
Defn ue sy a quadrche $\operatorname{tam} Q=[\alpha, b, c]$ feprosents on intefer n if $\exists(x, y) \in \mathbb{R}^{2}$ $B t-Q(x, y)=n$, te n is in the ronget of Q seco a A pinchan $Q=\mathbb{L}^{2} \rightarrow i, \mathbb{R}$

Nate simaple anthretc shous that
(4) $4 A\left(A x^{2}+8 x y+C y^{2}\right)=(2 A x+B y)^{2}+\left(4 A G B^{2}\right) y^{2}$

Hence of $P=B^{2}-4 A \ll 0$, then the futs of (8$)$ Is clugy pasinue-tence $\operatorname{tgA}(A) \operatorname{sgn}\left(A x^{2} B y \operatorname{c} \boldsymbol{\operatorname { c o g }}\right)$ tence a gome Q wh nefohe dise $D \leq 0$ represents only posithe numbur or only nefotve numbers?

Clecly the rance of values of
$[A B, C]$ is the regolue of rege of vilus
of $[-A,-B, C]$.
Fon hows on $f=0<0$ we consder onty the forns thot represent positive Ambers such foms ae called pesifue definte trey har $A>0$.
Eño $[A, B]$, $[C,-B, A]$ जैa

$$
(x, y) \Rightarrow(-y, x)
$$

If $A, B, C]$ is posint difmite 50 is $[C,-8, A]$ Hence $c>0$ as vell.

Rmk fuey quadthe fom
$Q(x, y)=A x^{2}+8 x y+c y^{2}$ con be untten
in mons fom

$$
Q(x y)=(x y)\left(\begin{array}{cc}
A & B / 2 \\
B / 2 & \&
\end{array}\right)\binom{x}{y}
$$

y QNQ va a mmatescic)
te $Q^{\prime}(x, y)=Q(x y) M^{t}$
hen $\left.Q^{\prime}(x, y)=(x y) M^{\frac{1}{3}} A \quad B / 2\right) M^{+}\binom{\square}{B / 2}$
Hence $\left.\left(\begin{array}{ll}B^{\prime} & B^{\prime} / 2 \\ B_{2} & C^{\prime}\end{array}\right)=\begin{array}{ll}A^{\prime} A & B / 2 \\ B / 2 & C\end{array}\right) M$

Note that $f\binom{\alpha}{q}=M \in \operatorname{sc}(2, z)$
and

$$
\binom{\left(x+\beta^{y}\right.}{(x+\delta y}=\binom{x}{y^{\prime}}=M\binom{x}{y}
$$

then a quadrac foon $q=a, b, c]$ is equudant bo $Q^{\prime}=\left[a^{\prime} b^{\prime}, c^{\prime}\right]=Q\left(\varangle y M^{t}\right)$
wher $a x^{2}-b x y+c y^{2}=a(\alpha x+\beta y)^{2}$

$$
\begin{aligned}
& +b(\alpha x+\beta)(\alpha x+\delta y) \\
& +c\left(\gamma x+\frac{y}{y}\right)^{2}
\end{aligned}
$$

Hence $\quad a^{\prime}=a \alpha+b \alpha \sigma+c \sigma^{2}=Q(\alpha, \gamma)$

$$
\begin{aligned}
& b^{\prime}=2 a \alpha \beta+b(\alpha \delta+\beta \gamma)+2 c \gamma \delta \\
& c^{\prime}=a \beta^{2}+b \beta \delta-\beta^{2}=a(\beta, \delta)
\end{aligned}
$$

Queshion tow many equivilence classes of quadretc poms are there?
Ansue cleory infonte sinces the Iscriminat $b^{2}-40 c$ remain inuonont undr tre ach of $M E s(2)$ (2) (hucel) Te I $Q N Q$ unth $M \in S L(2, \square)$ aen $b^{2}-4 a c=b^{2}-4 a c$.
And thee ant oly many intages $D=0,1(G)$

Qute $D=0,1$ med 4 since

$$
D-b^{2}-4 a c \equiv b^{2} \operatorname{sed} 4 \text { and }
$$

mod 1 an squere 18 of or 1 rod 4.
Quvesty far an $D=0,1 \quad(4)$ nee is ut levs one fom of aucd nanely

$$
Q_{1}(x, y)= \pm\left(x^{2}-04 y^{2} \quad\right) \quad \text { y } \quad D=0(4)
$$

A befter quechen $\frac{1}{}$ gोve dix de disenme
 $6^{2}-4 \pi=0$
tren se(2, te) atso acts on Qo
Dueshis tow mont equivilence quaseo are thee? \leq Ot fnite?
Thi \quad ansuered by bocrened who shaved thot

Thm 7. let $D \in \mathbb{Z} D \neq \square$ ten
\exists pritely man equivelonca clasgeo in

$$
100
$$

The pnof of thm 717 bafed on tee follouíng so colled reduchion hm (Lograge)

$$
\begin{equation*}
\# Q=\left[a^{\prime}, b^{\prime} c^{\prime}\right] \in \otimes D \quad s-t \tag{Q}
\end{equation*}
$$

and coefs of Q^{\prime} sohs y

$$
\begin{equation*}
\left(b^{\prime}\right) \leq\left(a^{\prime}\right) \leq 1 c^{\prime} \tag{*}
\end{equation*}
$$

Prect of Thm 71 follows fron (4) in

Sansfy (indoed if (a,b,ci]
schsf (8) bat bit $4 a c^{\prime}=D$
then $|D|=16^{12} 4 a^{\prime} c \mid \geq\left(4 a^{4} c^{1} 1-161^{2}\right.$

$$
24 \mid a 1^{2}-1 a^{2}+2=3 a^{2}
$$

Hence

$$
|a| \leq \sqrt{\frac{1 D}{3}}
$$

This gizes onky man choced for of since $|b| E l a^{\prime} l$ each al guten nec ho fantety mary $b l$ and since $c=\frac{b^{12}}{4 a^{\prime \prime}}$ olso n gnitey mery c1.

